

Multi-Area Security Constrained Economic Dispatch

Raquel Lim

Supervisor, Operations Regional Market Coordination New York Independent System Operator

Muhammad Marwali

Manager, Energy Markets Products
New York Independent System Operator

FERC Technical Conference

June 24, 2013 Washington, D.C.

Overview

- Key Concepts
- Real Time Coordination
- Security Constrained Economic Dispatch
- Formulation

Key Concepts

- Multi-Area Joint Dispatch
 - Achieve least cost solution by economically re-dispatching resources within multiple areas to
 - Control parallel flows
 - Manage constraints

Key Concepts

- Reduces Congestion
 - Expands pool of resources that are capable of addressing a region's transmission constraints
 - Provides better price convergence at the borders as a collective set of resources are used to solve system constraints
- Reduces Overall Cost of Congestion
 - Provides an RTO with the ability to request generation re-dispatch from neighboring market(s)
 - Solves internal constraints at a lower cost

Real Time Coordination

- Network Model
 - Each area must have sufficient network detail of neighboring area to determine accurate power flows
- Automatic Data Exchange
 - Relief Request MW
 - Constraint Shadow Cost (\$)
- Optimization
 - Area 1 and Area 2 re-dispatch systems to jointly solve for a system constraint until it is no longer active

Real Time Coordination Example

Area 1 requests 10 MW of relief at the current shadow price of -\$40.

Generator 2 is reduced by 50 MW (to 250 MW) to provide 10 MW of relief.

Area 2 constraint shadow price is -\$25.

Security Constrained Economic Dispatch

Security Constraint Economic Dispatch

Multi-Area SCED

Multi-Area SCED - Optimization

- Transmission Demand Curve (TDC) is used by Area 2 to solve for Area 1 internal constraint
 - Model Relief Request MW amount and Constraint Shadow Cost for minimization of dispatch costs to solve for external constraint
 - Prevents Area 2 from dispatching system at a higher cost than Area 1

Multi-Area SCED - Formulation

$$\min_{\{g_i\}} \sum_{i \in A_1} C_i(g_i) + \sum_{k \in A_2} \lambda_k p_k$$

S.T.

$$\sum_{i \in A_1} g_i - \sum_{j \in A_1} D_j = 0$$

$$\sum_{i \in A_1} S_{k,i} g_i^{'} \leq f_{pre,k}^{\max} - f_{pre,k} + \sum_{i \in A_1} S_{k,i} g_i^{'}$$

$$\forall k; k \in A_1$$

$$\sum_{i \in A1} S_{k,i} g_i - p_k \le \operatorname{Re} l_k + \sum_{i \in A1} S_{k,i} g_i$$

$$\forall k; k \in A_2$$

$$p_k \ge 0 \ \forall k; k \in A_2$$

$$\operatorname{Re} l_{k}$$

$$k \in A_{2}$$

$$k \in A_{1}$$

$$\min_{\{g_i\}} \sum_{i \in A_2} C_i(g_i) + \sum_{k \in A_1} \lambda_k p_k$$

$$\sum_{i \in A_2} g_i - \sum_{j \in A_2} D_j = 0$$

$$\left| \sum_{i \in A_2} S_{k,i} g_i \right| \le f_{pre,k}^{\max} - f_{pre,k} + \sum_{i \in A_2} S_{k,i} g_i$$

$$\forall k; k \in A_2$$

$$\left| \sum_{i \in A_{1}} S_{k,i} g_{i} - p_{k} \le \operatorname{Re} l_{k} + \sum_{i \in A_{1}} S_{k,i} g_{i} \right|$$

$$\forall k; k \in A_{1}$$

$$p_k \ge 0 \ \forall k; k \in A_1$$

Multi-Area SCED Advantages:

- Economically re-dispatch resources within multiple areas to achieve least cost solution
- Provide consistent pricing profile across multiple areas

Additional Multi-Area SCED Opportunities:

 PAR coordination between two areas to relieve system constraints

Potential Research Area:

 Decentralized economic dispatch for distributed generation

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com